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Abstract

Of ine goal-conditioned reinforcement learning (GCRL) promises general-purpose
skill learning in the form of reaching diverse goals from purely of ine datasets. We
proposeGoal-conditioned -AdvantageRegression (GoFAR), a novel regression-
based of ine GCRL algorithm derived from a state-occupancy matching perspec-
tive; the key intuition is that the goal-reaching task can be formulated as a state-
occupancy matching problem between a dynamics-abiding imitator agent and an
expert agent that directly teleports to the goal. In contrast to prior approaches,
GoFAR does not require any hindsight relabeling and enjoys uninterleaved opti-
mization for its value and policy networks. These distinct features confer GoOFAR
with much better of ine performance and stability as well as statistical performance
guarantee that is unattainable for prior methods. Furthermore, we demonstrate
that GOFAR's training objectives can be re-purposed to learn an agent-independent
goal-conditioned planner from purely of ine source-domain data, which enables
zero-shot transfer to new target domains. Through extensive experiments, we
validate GoFAR's effectiveness in various problem settings and tasks, signi cantly
outperforming prior state-of-art. Notably, on a real robotic dexterous manipulation
task, while no other method makes meaningful progress, GoFAR acquires complex
manipulation behavior that successfully accomplishes diverse goals.

1 Introduction

Goal-conditioned reinforcement learnintf] 43, 39] (GCRL) aims to learn a repertoire of skills

in the form of reaching distinct goal©fine GCRL [6, 47] is particularly promising because it
enables learning general goal-reaching policies from purely of ine interaction datasets without any
environment interaction2B, 25], which can be expensive in the real-world. As of ine datasets
contain diverse goals and become increasingly preva®edd 6], policies learned this way can
acquire a large set of useful primitives for downstream ta3&k A central challenge in GCRL is the
sparsity of reward signaBJ[; without any additional knowledge about the environment, an agent at a
state typically only accrues positive binary reward when the state lies within the goal neighborhood.
This sparse reward problem is exacerbated in the of ine setting, in which the agent cannot explore
the environment to discover more informative states about desired goals. Therefore, designing an
effective of ine GCRL algorithm is a concrete yet challenging path towards general-purpose and
scalable policy learning.

In this paper, we present a novel of ine GCRL algorith@pal-conditioned-AdvantageRegression
(GoFAR), rst casting GCRL as a state-occupancy match2zi) 32] problem and then deriving a
regression-based policy objective. In particular, GOFAR begins with the following goal-conditioned

state-matching objective:
min Dk (d (s; 9)kp(s; 9)) 1)
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Finally, we showcase GoFAR's planning capability in a cross-robot zero-shot transfer task. To
summarize, our contributions are:

1. GoFAR, a novel of ine GCRL algorithm derived from goal-conditioned state-matching

2. Detailed technical derivation and analysis of GoOFAR's distinct features: (1) relabeling-free,
(2) uninterleaved optimization, and (3) planning capability

3. Extensive experimental evaluation of GOFAR, validating its empirical gains and capabilities

2 Related Work

Of ine Goal-Conditioned Reinforcement Learning. One core challenge of (of ine) GCRL1B,

43] is the sparse-reward nature of goal-reaching tasks. A popular strategy is hindsight goal relabel-
ing [3] (or HER), which relabels off-policy transitions with future goals they have achieved instead
of the original commanded goals. Existing of ine GCRL algorithris47] adapt HER-based online
GCRL algorithms to the of ine setting by incorporating additional components conducive to of ine
training. [6] builds on actor-critic style GCRL algorithm8][by adding conservative Q-learning4]

as well as goal-chaining, which expands the pool of candidate relabeling goals to the entire of ine
dataset.

Besides actor-critic methods, goal-conditioned behavior cloning, coupled with HER, has been shown
to be a simple and effective methat¥]. [47] improves upon14] by incorporating discount-factor

and advantage function weightin@4 38], and shows improved performance in ofine GCRL.
Diverging from existing literature, GoFAR does not tackle of ine GCRL by adapting an online
algorithm; instead, it approaches of ine GCRL from a novel perspective of state-occupancy matching
and derives an elegant algorithm from the dual formulation that is naturally suited for the of ine
setting and carries many distinct properties that make it more stable, scalable, and versatile.

State-Occupancy Matching.State occupancy matching objectives have been shown to be effective
for learning from observation8g, 49, exploration P7], as well as matching a hand-designed target
state distribution13]; occupancy matching, in general, has been explored in the imitation learning
literature [L7, 45, 13, 20]. Our strategy of estimating the state-occupancy ratio is related to DICE
techniques for of ine policy optimizationd3, 35, 26, 21, 32]. The closest work to ours i8p], which
proposed -divergence state-occupancy matching for of ine imitation learning. Our work shows
that such a state-occupancy matching approach can be applied to GCRL. Algorithmically, GoFAR
differs from [32] in that it does not require a separate dataset of expert demonstrations; it achieves
this by modifying the discriminator, and in some settings can even be used without a discriminator,
whereas a discriminator is always required Bg][ Furthermore, we derive several new algorithmic
properties (Section 4.2-4.4) that are novel and particularly advantageous for of ine GCRL.

3 Problem Formulation

Goal-Conditioned Reinforcement Learning. We consider an in nite-horizon Markov decision
process (MDP)40] M = (S;A;R;T; o; ) with state spacé&, action spacé\, deterministic
rewardsr (s; a), stochastic transitions®  T(s; a), initial state distribution o(s), and discount
factor 2 (0;1]. Apolicy :S! ( A) outputs adistribution over actions to use in a given state.
In goal-conditioned RL, the MDP additionally assumes a goal s@azef (s)js?2 Sg, where the
state-to-goal mapping : S! G is known. Now, the reward functior(s; g)* as well as the policy
(aj s; g) depend on the commanded ggét G. Given a distribution over desired gogag), the
objective of goal-conditioned RL is to nd a policy that maximiz;s the discoynted return:

J( )= Eg p(g9);so  o:ar  (st;9)ist+1 T(jsear) tr(st;g) @)
t=0

Thegoal—conditionedst%e—action occupancy distributidn(s;a;g): S A G! [0;1]of is
d(ssag)=(1 ) ‘'P(st=s;a=2ajso oa (S90S T(sa) (3)

t=0
which captures the relative frequency of state-action visitations for a pglannditioned on goag.
The state-occupancy distribution then marginalizes over actibr(s; g) = ,d (s;a;g). Then, it

'In GCRL, the reward function customarily does not depend on action.



follows that (ajs;g)= % (fsagﬁ') . A state-action occupancy distribution must satisfyBetiman

ow constraintin order for it to be an occupancy distribution for some stationary policy
X X

dis;ag)=(1 ) o(s+ T(s] s;e)d(s; & 9); 8s2S;92G (4)

a Sa

We writed (s;0) = p(g)d (s;g) as the joint goal-state density inducedgfg) and the policy .
Finally, givend , we can express the objective function (2)J4s) = %E(s;g) d (sig)[r(s; 9)l.

Of ine GCRL. In ofine GCRL, the agent cannot interact with the environmight instead, it is
equipped with a static dataset of logged transitibns= f ;g\, , where each trajectory(') =
(si;al?:r§): sl gy with s o andg() is the commanded goal of the trajectory. Note
that trajectories need not to be generated frogoal-directedagent, in which casg) can be
randomly drawn fronp(g). We denote the empirical goal-conditioned state-action occupancies of
DO asd®(s; a;g).

4 Goal-Conditionedf -Advantage Regression

In this section, we introduce Goal-conditionedAdvantage Regression (GoFAR). We rst derive the
algorithm in full (Section 4.1), then delve deep into its several appealing properties (Section 4.2-4.4).

4.1 Algorithm

We rst show that goal-conditioned state-occupancy matching is a mathematically principled approach
for solving general GCRL problems, formalizing the teleportation intuition in the introduction.

Proposition 4.1. Given anyr (s; g), for eachg in the support op(g), de nep(s; g) = % where
Z(g):= € (59dsis the normalizing constant. Then, the following equality holds:
Dk (d (sig)kp(s;g))+ C=(1  )JI( )+ H(d (s;9)) ®)

whereJ () is the GCRL objective (E¢2)) with rewardr (s;g) andC := Eg (g [logZ(9)].

See Appendix E.1 for proof. This proposition states that, for any choice of resrd), solving the
GCRL problem with a maximum state-entropy regularization is equivalent to optimizing for the goal-

conditioned state-occupancy matching objective with target distribplisig) := erz(::)) . Now, the

key challenge with optimizing this objective of ine is that we cannot sample fdois; g). To address
this issue, following 32], we rst derive an of ine lower bound involving arf -divergence (see
Appendix A for de nition) regularization term, which subsequently enables solving this optimization
problem via its dual using purely of ine data:
Proposition 4.2. Assuméfor all g in support ofp(g), 8s; d°(s; g) > 0if p(s;g) > 0. Then, for any
f -divergence that upper bounds the KL-divergence,
. ) p(s; ) . Ofa- A

Dk (d (s;9)kp(s;9))  Esig) d (si9) |Ogm Dt (d (s;a0)kd-(s;a,9)) (6)
The RHS of(6) can be understood as &nrdivergence regularized GCRL objective with reward
functionR(s; g) = log d%((sg?;) (we use capitaR to differentiate user-chosen rewaRdfrom the
environment reward). Intuitively, this reward encourages visiting states that occur more often in the
“expert” state distributiop(s; g) than in the of ine dataset, and tedivergence regularization then
ensures that the learned policy is supported by the of ine dataset. This choice of reward function can
be estimated in practice by training a discriminator [5]S G ! (0;1) using the of ine data:

MINEy pg) Ep(sig) [109C(S; 9] + Eqo(sig) g1 (s 9)] )

We can in fact obtain a looser lower bound that does not require training a discriminator (see B for a
derivation):

DkL (d (S;9)kp(S;0))  E(sig) d (sig) [109P(S;0)] Dy (d (s;a)kd®(s;a;g)  (8)

2This assumption is only needed in our technical derivation to avoid division-by-zero issue.




Because(s;g) / € (59, we may substitut®(s; g) := r(s;g) (when the of ine dataset contains
reward labels) fofog p(s; g) and bypass having to train a discriminator for reward.

Now, for either choice of lower bound, we may pose the optimization problem with respect to valid
choices of state-action occupancies directly, introducing the Bellman ow constraint (4):

. . A (0] . A
d(sz%))‘ . E(sig) dsig) [F(s:9)]  Dr (d(s; & g)kd™ (s; a;g))

X
P) st dis;ag)=(1 ) o(9+ T(sjs&)d(s;&0);852 S;92 G

a s &

©)

This reformulation does not solve the fundamental problem @)attill requires sampling from

d(s; g); however, it has now written the problem in a way amenable to simpli cation using tools
from convex analysis. Now, we show that its dual problem can be reduceduncamstrained
minimization problem over the dual variables which serve the role of a value function; importantly,
the optimal solution to the dual problem can be used to directly retrieve the optimal primal solution:

Proposition 4.3. The dual problem t¢9) is
(D)  min (1 )Esg) op@V(SiOIt Esag) oo [f2(R(s:9)+ TV(s;ag) V(s

V(sig) 0
(10)
wheref, denotes the convex conjugate functionf ofV (s;g) is the Lagrangian vector, and
TV(s;a,g) = Eg T(js;a)[V(so; 0)]. Given the optimal/ , the primal optimald satis es:

d(s;ag)= d(s;a0)fS(R(s;0)+ TV (s;&0) V (s;0):;852S;a2A;g2G  (11)

A proof is given in Appendix B. Crucially, as neither expectationfifl) depends on samples from

d, this objective can be estimated entirely using of ine data, making it suitable for of ine GCRL.
For tabular MDPs, we show that for a suitable choicé -@fivergence, the optimal in fact admits
closed-form solutions; see Appendix D for details. In the continuous control setting, we can optimize
(10) using stochastic gradient descent (SGD) by parameteNziaging a deep neural network.

Then, once we have obtained the optimal (resp. conveiMgegdyve propose learning the policy via
the following supervised regression update:

maxEy pg)E(sia) do(siaig) [(fg(R(S;g)"' TV (s;a09) V (s;9)log (ajs;g)] (12)

We see that the regression weights are the rst-order derivatives of the convex conjuijateatiated

at thedual optimal advantageR(s;g)+ TV (s;a;9) V (s;g); we refer to this weighting term

asf -advantage Hence, we name our overall meth@dal-conditioned -Advantage Regression
(GoFAR) an abbreviated high-level pseudocode is provided in Algorithm 1 and a detailed version
is provided in Appendix C. In practice, we implement GoFAR withdivergence, a choice of

f -divergence that is stable for off-policy optimization [49, 32, 26]; see Appendix C for details.

Algorithm 1 Goal-Conditioned -Advantage RegressionNote thaf12)forgos directly minimiz-
(Abbreviated); 3-disjoint steps ing (1) of ine, which has been found

: — to suffer from training instability21].

1: (Optionally) Train discriminator-based reward (7) Instead, it naturally incorporates the

2: Train (optimal) dual value functiol (s;g) (10) primal-dual optimal solutions in a re-
3: Train policy viaf -Advantage Regression (12) gression loss. Now, we will show that
this policy objective has several theo-

retical and practical bene ts for of ine GCRL that make it particularly appealing.

4.2 Optimal Goal-Weighting Property

We show that optimizing12) automatically obtains theptimal goal-weighting distributionThat is,
GOFAR trains its policy as if all the data is coming from the optimal goal-conditioned polig®@jor

In particular, this property is achieved without any explicit hindsight relabeling (see Appendix A for
a technical de nition), a mechanism that prior works heavily depend on. To this end, we rst de ne
p(g ] s; a) to be the conditional distribution of goals in the of ine dataset conditioned on state-action
pair (s;a). Then, according to Bayes rule, we have that

Ofc: A
TELIND ) pg)a©(s;a0) = Pl s:8)°(s: ) (13)

OIS = —505a



Using this equality, we can rewrite the policy objective (12) as follows:
min E(sa) @ (sa)Eq poisa) [(FAR(SSO+ TV (s;a0) V (sig)log (ajs;g)] (14)
=min  E(sa) do(s:a)Eg prgisia) 109 (2] s;0)] (15)
where
30((?;2';%)) (16)
Thus, we see that GoFARfs-advantage weighting scheme is equivalent to performing supervised

policy regression where goals are sampled f{mj s; a). Now, combining(16) and Bayes rule
gives

pgis;a)/ pis;a(fAR(s;9)+ TV (ssag) V (s;9)= p(gjs:a)

d (s;a9)
p(gjs;a)dO (s;a)
p(9)
Thus, we can replace the nested expectatiof$Shand obtain that GOFAR policy update amounts
to supervised regression of the state-action occupancy distribution aiptivaal policy to the

regularized GCRL problem (9):

GoFAR = Min Eg p(g)E(s;a) d (s;a;g) [log (ajs;Q)] (18)

d°(s;a)p(gj s;a) / dO(s;a)p(gjs;a) = p(g)d (s;a Q) 17

This derivation makes clear GOFAR's connection with the hindsight goal relabeling mech&hism [
that is ubiquitous in GCRL: GoFAR automatically performs the optimal goal-weighting policy update
without any explicit goal relabeling. Furthermore, our derivation also suggests why hindsight relabel-
ing is sub-optimal without further assumption on the reward functi@h [it heuristically chooses

p(gj s;a) to be the empirical trajectory-wise future achieved goal distribution (i.e., HER), which
generally does not coincide with the goals that the optimal policy would reach; see Appendix E.2 for
further discussion.

4.3 Uninterleaved Optimization and Performance Guarantee

An additional algorithmic advantage of GOFAR is thadisentangleshe optimization of the value
network and the policy network. This can be observed by noting that GoFAR's advantagd 18rm

is computed usiny , theoptimalsolution of the dual problem. This has the practical signi cance

of disentangling the value-function upddf®) from the policy updat€12), as we do not need to
optimize the latter until the former has converged. This disentanglement is in sharp contrast to prior
GCRL works f7, 6, 11, 3], which typically involve alternating updates to the critic Q-network and

the policy network, a training procedure that has found to be unstable in the of ine s&8hgdhis

is unavoidable for prior works because their advantage functions are estimated using the Q-estimate
of thecurrentpolicy, whereas our advantage term naturally falls out from primal-dual optimality.

The uninterleaved and relabeling-free nature of GoOFAR also allows us to derive strong performance
guarantees. Becauske is xed in (12), this policy objective amounts towaeightedsupervised
learning problem. Therefore, we can extend and adapt mature theoretical results for analyzing
Behavior Cloning 1, 42, 46] as well as nite sample error guarantees for weighted regres3ido [

obtain statistical guarantees on GoFAR's performance with respect to the optirfal (9):

Theorem 4.1. ASSUMESUP. 5.4 % M andsupr(s;g)] Rmax- Consider a policy class

: fS! ( A)gsuchthat 2 . Then, for any 2 (0;1], with probability at leastl ,
GOFAR(18) will return a policy” such that:

r—

r 2RmaxM In(j j=)

VoV Ty N

(19)

Notably, the error shrinks as the size of thféne dataN increases, requiring no dependency on
access to data from the “expert” distributidn. This provides a theoretical basis for GOFAR's
empirical scalability as we are guaranteed to obtain good results when the of ine data becomes more
expansive. In contrast, prior regression-based GCRL methods cannot be easily reduced to a simple
weighted regression with respect to the desired goal distribptigh so they only obtain weaker
results under stronger assumptions on the of ine data (e.g, full state-space coverage) as well as the
policy; see Appendix E.3 for discussion.












that can push objects over short distances but fails for longer tasks. For these distant goals, we train
the goal-conditioned GoFAR value functidh ( (s); g) and planner ( (s9 ] (s);g) according

to (20) and(21), to set goals for oy, . We use the same of ine FetchPush data as in Section 5.1. We
compare two approaches: (1) naively usingltbe/-Level Controller, and (2) using the GoFAR
planner to guide the low-level controlleBOFAR Hierarchical Controller ). See Appendix G.4 for
additional details. We report the success rate over 100 random distant test goals in Table 2. We
see that naively commanding the low-level controller with these distant goals indeed results in very
low success rate. When the controller is augmented with GOFAR planner, the success rate nearly
doubles. Note that our planner itself is much superior: if all subgoals are perfectly re&dieAiR

Planner (Oracle) achieves 84% success. See Appendix G.4 for additional experimental details.
These experiments validate GoFAR's ability to zero-shot transferring subgoal plans to enhance the
capabability of low-level controllers. Note that we have no access to any data from the target domain,
and this planning capability naturally emerges from our training objectives and does not require any
change in the algorithm. We show qualitative results in Appendix H.4 and videos in the supplement.

6 Conclusion

We have presented GoFAR, a novel regression-based of ine GCRL algorithm derived from a state-
occupancy matching perspective. GOFAR is relabeling-free and enjoys uninterleaved training, making
it both theoretically and practically advantageous compared to prior state-of-art. Furthermore, GoFAR
supports training a goal-conditioned planner with promising zero-shot transfer capability. Through
extensive experiments, we have validated the practical utility of GOFAR in various challenging
problem settings, showing signi cant improvement over prior state-of-art. We believe that GOFAR's
strong theoretical foundation and empirical performance make it an ideal candidate for scalable skill
learning in the real world.
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A Additional Technical Background

We provide some technical de nitions that are needed in our proofs in Appendix B and discussions
of hindsight relabeling in Section 4.1 of the main text as well as Appendix E.2.
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A.1 f -Divergence and Fenchel Duality

These de nitions are adapted from [32, 34].
De nition A.1 (f -divergence) For any continuous, convex functiénand two probability distribu-
tionsp;q2 ( X) over a domairK, thef -divergence op computed atis de ned as
p(x)

Df (pkq) = EX q f q(X)

(22)

Some common choices btdivergence includes the KL-divergence and tRedivergence, which
corresponds to choosirigdx) = x logx andf (x) = %(x 1)?, respectively.

De nition A.2 (Fenchel conjugate)Given a vector spacé€ with inner-produch; i, theFenchel
conjugatef, : X, ! R of a convex and differentiable functidn: ! Riis

fo(y) =maxhcyi  f(x) (23)

and any maximizex of f,(y) satis esx = f(y).

For anf -divergence, under mild realizability assumptio8pdn f , the Fenchel conjugate &f; (pkq)
aty : X! Ris

Do (y) przn(a>§<)Ex ply(x)]  Dr (pka) (24)

= Ex qlf2(y(x))] (25)

and any maximizep of D, (y) satis esp (x) = q(x)f X(y(x)). These optimality conditions can
be seen as extensions of the KKT-condition.

A.2 Hindsight Goal-Relabeling

We provide a mathematical formalism of hindsight goal relabeling [3].

De nition A.3. Given a states; from a trajectory = fsg;ap;ro;:::;St; 99, hindsight goal-
relabeling is the goal-relabeling distribution

Prer (9 St;a; ) = ol (st);: (st)l (26)
whereq is some categorical distribution taking values in(s¢);:::; (st)g.

That is, the relabeled goal is selected from some distribution goals that are reached in the future in
the same trajectory. The most canonical choicg, &dhown ashindsight experience replgHER),
selectgy to be the uniform distribution. Once a gagis chosen, the reward label is also re-computed
using the reward function assumed by the algorithym= r(s;; ).

B Proofs
In this section, we restate propositions and theorems in the paper and present their proofs.

B.1 Proof of Proposition 4.2

Proposition B.1. Assume for alty in support ofp(g), 8s; d°(s; g) > 0if p(s; g) > 0. Then, for any
f -divergence that upper bounds the KL-divergence,

p(s; g)
d°(s; 0)
E(sg) d (si0) [100P(S;9)] Dy (d (s;a g)kd®(s; a; g)) (28)

Ds (d (s;ag)kd°(s;a,9))  (27)

Dk (d (s;9)kp(s;9)) E(sg) d (sg) 09

Proof. We rst present and prove some technical lemma needed to prove this result. The following
lemmas and proofs are adapted fro&2][ in particular, we extend these known results to the
goal-conditioned setting.
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Lemma B.1. For any pair of valid occupancy distributiorty andd,, we have
Diw (di(s; 9)kdz(s;9)  Drw (du(s; & g)kda(s; &; ) (29)

Proof. This lemma hinges on proving the following lemma rst.
Lemma B.2.
Diw (di(s;a; 8" g)kda(s;2; 8% 9)) = D ww (da(s; & g)kda(s; & g)) (30)

Proof.
I%KL (di(s; a; s% g)kda(s; a; s> g))

di(s;a;9) T(s°]s;a)
— v q- O 1
T on s o ORI o g T s
= _pQdi(sia & g)log S ’g)dsodadsdg
5 A s (529

1( ) !g)

= P(9)di(s; & g) log —~———dadsdg
sAG da(s; & )

=D kL (di(s; & g)kdz(s; a; 9))

ds’dadsdg

Using this result, we can prove Lemma B.1:
DL (di(s; & g)kdz(s; & 9))
=Dy (di(sia; s’ gkda(s; a;s% 9))
- di(s;ag) T(s% s;a)
= p(g)dl(s a; s, g)log G ag T(9sa)

ZS A S
T sas p(g)dl(s 9) 1(aj s;9T(s] s;a)log dli,;gi %zoi 2,3

z
= p(o)di(s;9) 1(ajs;9T(s°]s;a)log dlg g;d ddadsdg

z
. e )T (L s 1(aj $;9)T(s"] s;a)
t_POA(sig) 1@sigT(sTysialog — or 65 a)

Z
_ . di(s;9)
= p(9)di(s;9)log 0 g)dsolg+ p(g)di(s;g9) 1(ajs;g)log

=D (di(s;g)kdx(s;09)) +D kL ( 1(ajs; 9k 2(ajs; )
Dke (di(s; g)kdz(s; 9))

ds’dadsdg

ds%dadsdg

ds’dadsdg

1(@js;g)

7dadsd
2(ajs;0) g

Now given these technical lemmas, we have
[Z)KL (d (s;9)kp(s; 9))

= p(g)d (s;0)log
Z

= p(9)d (s;9)log

d (s;0) d°(s;0)
p(s; 9) do(sg)

d°(s; 9) d (s;9)
0(s.0) dsdg+  p(g)d (s;g)log O )dsdg

do(s;
Eso) ¢ o 09 S0 +Di d (i@ oke(siag)

dsdg; we assume that(s; g) > 0whenevep(s;g) > 0.

where the last step follows from Lemma B.1. Then, for gy Dy, , we have that

p(s; 9)
do(s; 9)

D (d (s;9)kp(si9)  E(sg) d (sg) 109 d (s;a0)kd?(s;a0)  (31)
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h i
Then, sinceE(s.q) 4 (sig) Iogm 0, we also obtain the following looser bound:

D (d (s;0)kp(s;9))  E(sg) d (sg) [0gP(s;@)] Dy d (s;a;g)kd°(s; a;g) (32)
O

B.2 Proof of Proposition 4.3

Proposition B.2. The dual problem t¢9) is
(D)  min (1 )Esg) op@V(SiOIt Esag) oo [f2(r(s;g)+ TV(s;ag) V(s;9)];

V(sg) O
(33)
wheref, denotes the convex conjugate functionf ofV (s;g) is the Lagrangian vector, and
TV(s;a;g) = Eq T(js;a)[V(so; 0)]. Given the optimal/ , the primal optimald satis es:

d(s;a0)= d(s;a0)fd(r(s;g)+ TV (s;a;9) V (s;0);852 S;a2 A;,g2 G (34)

Proof. We begin by writing the Lagrangian dual of the primal problem:

H . . A O . A
V(Q’l_!,'? Od(sr;g%? OIZ(s;g) d(sig) 109 (r(s;9))]  Ds (d(s; a; g)kd™ (s; a; g))

X X _ X (39)
+  pOV(s;9) @1 ) ofs)+ T(sjs@)d(s;& Q) d(s; a; g)A
Sig S& a
\)/(Vherep(g)vx(s; ) is the Lagrangian \s(ector. Then,)\éve note that ¥
V(s;g) T(sjs;ad(s;a9) = d(s;&09) T(sjs;a)V(s;9) = d(s;a;9)TV(s;a0)
S;g Si& s &g S s;a;g
(36)

Using this, we can rewrite (35) as

v (g}é? . d(sg% 0(l )Esig) (o) [V(SiO]+ Esag) al(r(ss@)+ TV(s;ag) V(s;0)l

D (d(s; a; 9)kd® (s; a; g))
(37)
And nally,

V(@J? O(1 )E(sig) ( ooy [V(Si Q)]+ d<$?$ OE(s;a;g) alr(s;g)+ TV(s;a9) V(s;0))]

Ds (d(s; & g)kd®(s; a; 9))
(38)
Now, we make the key observation that the inner maximization probld@8jis in fact the Fenchel
conjugate ofD; (d(s; a; g)kd®(s;a;q)) atr(s;g) + TV(s;a;g9) V(s;q). Therefore, we can
reduce (38) to an unconstrained minimization problem over the dual variables
v (Qf'gi? 0(1 )Esig) o) [V(Si9]+ Esagy ao [f2(r(s;9)+ TV(s;ag) V(s;9)];
(39)
and consequently, we can relate the dual-optivhato the primal-optimall using Fenchel duality
(see Appendix A:
d(s;ag)= d(siagf7(r(s;g+ TV (s;ag) V (s;0);852S;a2Ag2G; (40)
as desired. 0

B.3 Proof of Theorem 4.1

Theorem B.3. Assumesup, ,.q go((ss;;z;;%)) M andsupir(s;g)j Rmax. Consider a policy class

fS! ( A)gsuchthat 2 . Then, forany 2 (0;1], with probability at leastl ,
GoFAR(18) will return a policy such that: ;
r 2RpaxM I j=)
@ )2 N

\% \%

(41)

whereV = Esg) ( 0:0)[V(S; )]
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Proof. We begin by deriving an upper bound using the performance difference lemma [1]:

N 1 N
vV oV TES dg po)Ea  (isgA (s180) (42)

Then, using standard algebraic manipulations, we have:

1 A
1 Esdg pwBa  (sgA (Sa0)
1 N N
=7 Esdiw e BEa  (soA (S0 Ea rjsgA (Sa0)
Rumax , _ (43)
T )2 Es a9 ok (is09) "(jsigki]
2Rmax

WES dig poylk (Jsig " isigkey]

Then, sincesup;,.q go((sszg)) M, we can use Hoeffding's inequality with weighted empirical

loss [7] to obtain that:

r—
A 2RmaxM In(j j=)

VoV Ty N

(44)
O

C GOFAR Technical Details

In this section, we provide additional technical details of GOFAR that are omitted in the main text.
These include (1) detail of the GOFAR discriminator training, (2) mathematical expressions of GoFAR
specialized to commoh-Divergences, and (3) a full pseudocode.

C.1 Discriminator Training

Training the discriminator 7 in practice requires choogi(ig; g). For simplicity, we sep(s; g) to be
the Dirac distribution centered gt I( (s) = g); this precludes having to choose hyperparameters
for p(s; g).
Once the discriminator has converged, we can retrieve the reward fulR{tspg) = log d%((s;?é) =
d® (s:9)

p(s;g)+ dO(s;g) ©

log ﬁ 1, sincec (s;g) =

C.2 GoFAR with commonf -Divergences

GOoFAR requires choosingfadivergence. Here, we specialize GoFAR tedivergence as well as
KL-divergence as examples. Our practical implementation udegivergence, which we found to be
signi cantly more stable than KL-divergence (see Section 5.1).

Example 1 (GoFAR with 2-divergence) f (x) = 3(x 1)?, and we can show thdb(x) =
2(x +1)2 andf Y(x) = x + 1. Hence, the GOFAR objective amounts to
h i
. 1
V(rsT;? 0(1 )E(s;g) ( o:p(9) [V(s;0)]+ EE(s;a;g) o (R(s;9)+ TV(s;ag) V(s;0)+1) 2
(45)
and
d (s;a;g) = d(s;ag)max (0;R(s;9)+ TV (s;a9) V (s;g) +1) (46)
Example 2 (GoFAR with KL-divergence) We havef (x) = xlogx and thatD,s (y) =
logEx g[expy(x)] [4]. Hence, the KL-divergence GoFAR objective is

min (1 )Esg) ( oip(a) [V(S;i91+109 E(sag) ao [EXP(R(S;9)+ TV(s;a9) V(s;9)]

V(sig) 0
(47)
and
d (s;a;g) = dO(s;a;g)softmax (R(s;g)+ TV (s;a;9) V (s;q)) (48)
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Now, we provide the full pseudocode for GoFAR implemented usihglivergence in Algorithm 2.

C.3 Full Pseudocode

Algorithm 2 GoFAR for Continuous MDPs

1: Require: Of ine datasetd®, choice off -divergencd , choice ofp(s; g)
2: Randomly initialize discriminatar , value functionV , and policy

3: // Train Discriminator (Optional)

4: for number of discriminator |terat|0nk)

5:  Sample minibatchsy;g'gl;  d°

6: Sampldsigt, p(s;g) 8i2 1 N b

7:  Discriminator objectivet ()= & L, flog(1 ¢ (syig)+ & [ [loge (shig)l]
8: Updatec using SGDc c el c( )

9: end for

10: /I Train Dual Value Function
11: for number of value iterationdo o ) _
12:  Sample minibatch of ofine datks} ; al;si.; ;gigh;  d°;fshg, o, fohgM, d°
13:  If discriminator, obtain rewar®®(si;g) = log oy 1 8i=1:nN
t9t
14:  If no discriminator, obtain re\/\@rcﬂ R(sh; o)a, dOP _ _ _ o
15: Value objectivel v ( y=1 i im IV (sh: gh)] + i N fa(RU+ V(shasd) V(stig))
16: Updatev using SGDV \% vriL v()
17: end for
18: /I Train Policy With f -Advantage Regression
19: for number of policy iterationglo
20:  Sample minibatch of of ine daths}; al;si.; ;gigl;  d°

21:  If discriminator, obtain rewardR(s};gi) = log PR (Sl,_g,) 1 8i=1:::N
t9t
22:  If no discriminator, obtalnlgewarcﬂR(st,gt)g, d® o
23:  Policy objectivel. ( )= .N1 fORI+ V (sla:d) V(si;d log (ajs;q)
24: Update using SGD: b ()
25: end for

D GoFAR for Tabular MDPs

In Section 4.1 of the main text, we have stated that in tabular MDPs, GOFAR's optimal dual value
function (10) admits closed-form solution when we choosedivergence. Here, we provide a
derivation of this result.

Recall the dual problem (1)
h i
1
V(g]gl;? 0(1 )E(s;g) ( o:p() [V(s: )+ EE(s;a;g) @ (R(s;g)+ TV(s;ag) V(s;g)+1) 2
(49)
To derive a closed-form solution, we rewrite the problem in vectorized notation; we borrow our
notations from 2. We rst augment the state-space by concatenating the state dimensions and
the goal dimensions so that the new state sjgabas dimensios + G. Then, the new transition
function, with slight abuse of notatiof,((s% g% j (s;g);a) = T(sj s;a)l(g° = g); the new initial
state distribution is thuso(s; g) =  o(s)p(g). ThereforeT 2 RISICIAIL SICI 5qq (2 RISICH
We assume that the of ine datasBX° is collected by a behavior policy,. We construct
a surrogate MDRM' using maximum likelihood estimation; that i$,((s® g% j (s;g);a) =
e O
nisas)1(g° = g), and we imputef((s® g) j (sig);a) = & whenn(s;a) = 0. Then, using
RISIGIAI RIS Gl

M, we can compute® 2 using linear programming and de ne reward2

asr(s;g) = log %((Ssgé) wherep(s;g) 2 R¥1% . Now, dene T 2 RISiGiiAll SiGi gych that

(TV)(s;ag) = sPT((s%q) j (s:0);a)V(s®g), whereV 2 RZIC s the dual optimization
variables. We also de nB 2 RISICGiAll SiiCGI gychthalBV)(s;a;g) = V(s;g). Finally, we de ne
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D =diag(d®) 2 RISICiiAii SiGiiAl Now, we can rewrite the dual problem as follow:

: 1
yin @ )Bso) o) [V(SOIF SBsag) o0 (RSG+ TV(s20) V(s;0)+1)°
’ 20 1,3

) J{‘J;’;)(l ) oV + %E(s;a;G) doQ%)FR(S:a:QH Tvgg:a:g) B V(s:a:9;+1g £

Ry (s:a;9)

. 1
) mn(@ ) gV+ Z(Ry+I1)’D(Ry +1)
V (sig) 2

(50)

Now, we recognize thgb0)is equivalent to Equation 49 ii3g], as we have reduced goal-conditioned
RL to regular RL with an augmented state-space. Now, using the same derivatior32s we have

that
1

V= (T B)YD(T B) ( 1) o+(B T)’D(l + BR) (51)
and we can recovet (s;a;Q):
d (s;a9) = do(s;a9) (BR(s;ag)+ TV (s;ag) BV (s;a0)+1) (52)

Givend , we may extract the optimal policy by marginalizing over actions:

d(ssag) _ pdsiag(R(sig+ TV(siag) V(s;g)
24 (a0 ,d(sag(R(ss9+ TV(siag V(sig)

(ajs;g= P (53)

E Additional Technical Discussion

E.1 Connecting Goal-Conditioned State-Matching and Probabilistic GCRL

Suppose the GCRL problem comes with a reward funat{@ng). We also show that there is an
equivalent goal-conditioned state-occupancy matching problem with a target distrip(gia)
de ned based om(s; g).

Proposition E.1. (Proposition 4.1 in tt&g paper) Given anys; g), for eachg in the support op(g),
de nep(s;q) = % whereZ (g) ;= € (89 dsis the normalizing constant. Then, the following
equality holds:

Dk (d (sig)kp(s;g))+ C=(1  )JI( )+ H(d (s;9)) (54)

whereJ ( ) is the GCRL objective (Eq2)) with rewardr(s;g) andC = Ey ,gllogZ(g)] is a
constant.

Proof. We have that
@ )I()
=By p)Es d (s;g)Lr(s; )]
=Eg po)Es d (sig) loge 9

e(597(g)
=Eg p9)Es d (si) |09W

g (s;9)
=Eg p9)Es d (si) Iogm + Eg pg)[logZ(9)] (55)

g9 d (59
_EQ P(Q)ES d (s;0) |Og Z(g) d (S; g)

S,
=Eg pg)Es d (si9) 109 dp((s'gé) + By pgEa (sigpllogd (s;g)]+ C

=Eg pg [ Dk (d (s;9)kp(s;g)) H (d (s;g)]l+ C
Rearranging the inequality gives the desired result. O
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A constant ternC appear in the equality to account for the need for normaligitf® to make it a
proper distribution. This, however, does not change the optimal solution for the goal-conditioned
state-occupancy matching objective. Therefore, we have shown that for any choice ofrésvajd
solving the GCRL problem with a maximum state-entropy regularization is equivalent to optimizing

for the goal-conditioned state-occupancy matching objective with target distritp{8opg) := e;(s;,)) .

E.2 Optimality Conditions for Hindsight Relabeling

In section 4.2, we have stated that HER is not optimal for most choices of reward functions. In this
section, we investigate conditions under which hindsight relabeling methods such as HER would be
optimal.

Let the goal-relabeling distribution for HER Ipaer (g j S; a); we do not specify the functional form
of puer (0] S; a) for generality (see 26). Then, in order for this distribution to be optimal, then it
must satisfy

prer (9] ;@) = p(gjs;(FAR(s;9)+ TV (siag) V (s;9) (56)

Then, the choice af(s; g) such that this equality holds is the reward function for which HER would
be optimal. However, solving far(s; g) is generally challenging and we leave it to future work for
investigating whether doing so is possible for genérdivergence coupled with neural networks.

This optimality condition is related to a prior work(], which has found that hindsight relabeling is
optimal in the sense of maximum-entropy inverse BQ ffor a peculiar choice of reward function
(see Equation 9 in1[0]), which cannot be implemented in practice. Our result is more general as it
applies to any choice df-divergence, and is not restricted to the form of maximum-entropy inverse
RL.

E.3 Theoretical Comparison to Prior Regression-based GCRL methods

In section 4.3, we have stated that GOFAR's theoretical guarantee (Theorem 4.1) is stronger in nature
compared to prior regression-based GCRL methods. Here, we provide an in-depth discussion.

Both GCSL [L4] and WGCSL 7] prove that their objectives are lower bounds of the true RL
objective (Theorem 3.1 inH] and Theorem 1 in47], respectively); however, in both works, the

lower bounds are loose due to constant terms that do not depend on the policy and hence do not
vanish to zero. In contrast, GOFAR's objecti{&) is, by construction, a lower bound on the RL
objective, as it simply incorporated adivergence regularization. If the of ine dat is on-policy;

then our lower bound is an equality. In contrast, even with on-policy data, the lower bounds in both
GCSL and WGCSL are still loose due to the unavoidable constant terms.

GCSL also proves a sub-optimality guarantee (Theorem 3.24j) inder the assumption of full
state-space coverage. Though full state-space coverage has been considered in some prior of ine
RL works [24, 31], it is much stronger than the concentrability assumption in our Theorem 4.1,
which only applies ta . Furthermore, this guarantee is not statistical in nature, and instead directly
makes a strong assumption on thaximumntotal-variance distance betweerand optimal  for the
GCSL objective, which is dif cult to verify in practice. In contrast, our bound suggests asymptotic
optimality: given enough of ine data, the solution to GoFAR's policy objective will converge to

. Finally, WGCSL proves a policy improvement guarantee (Proposition 470 {inder their
exponentially weighted advantage; the improvement is not a strict equality, and consequently there is
no convergence guarantee to the optimal policy. Furthermore, this result is not directly dependent on
their use of an advantage function, so it is not clear the precise role of their advantage function in
their algorithm.

F Task Descriptions

In this section, we describe the tasks in our experiments in Section 5.
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F.2 Hand Reach

Uses a 24 DoF robot hand with a 20 dimensional action space. Observations consist of each of the 24
joints' positions and velocities. The goal space is 15 dimensional corresponding to the positions of
each of its ve ngers. The goal is achieved when the mean distance of the ngers to their goals is
less than 1cm. The reward is binary and sparse: 0O if the goal is re'ached and -1 otherwise, i.e.

1 X

5i=1

r(s;a;g)=1 1 ksi gk, 001

F.3 D'ClawTurn (Simulation)

First introduced by Ahn et al2], the D'Claw environment has a 9 DoF three- ngered robotic hand.
The turn task consists of turning the valve to a desired angle. The initial angle is randomly chosen
from[ 3; 3]; the target angle is randomly chosen fr{)m%; ZT]. The observation space is 21D,

consisting of the current joint angles, their velocities_, angle between current and goal angle, and
the previous action. The environment terminates after 80 steps. The reward function is de ned as:

Sy-api i
r=1 arctan2 Yo arctan2 bl 0:1
Sx:obj Ox;obj

F.4 D'ClawTurn (Real)

To make real-world data collection easier, we slightly modify the initial and target angle distributions.
The initial angle is randomly chosen frdm 5 ; 5]; the target angle is randomly chosen frpm; ; 5 1.

Using this task distribution, collecting 400K transitions with random actions takes about 15 hours. In
Figure 8, we also include a larger picture of the robot platform.

Figure 8: The D'Claw tri- nger platform.

G Experimental Details

In this section, we provide experimental details omitted in Section 5 of the main text. These include
(1) technical details of the baseline methods, (2) hyperparameter and architecture details for all
methods, (3) of ine GCRL dataset details, and nally, (4) experimental details of the zero-shot
transfer experiment.

G.1 Baseline Implementation Details

DDPG. We use an open-source implementation of DDPG, which has already tuned DDPG on the
set of Fetch tasks. We implement all other methods on top of this implementation, keeping identical
architectures and hyperparameters when appropriate. The critic objective is

MNE (g a9 a5+ Qstas (Su130)i0)  Qlstiai )] (57)

whereQ denotes the stop-gradient operation. The policy objective is
min - E asn g aolQSH (St:0);9)] (58)
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DDPG updates the critic and the policy in an alternating fashion.
ActionableModel. We implement AM on top of DDPG. Speci cally, we add a CQL loss in the critic

update:
Esg) doa exp()[Q(Sia; 9] (59)

wheredC is the distribution of the relabelled dataset. In practice, we safifplandom actions

from the action-space to approximate this expectation. Furthermore, we implement goal-chaining,
where for half of the relabeled transitions in each minibatch update, the relabelled goals are randomly
sampled from the of ine dataset. We found goal-chaining to not be stable in some environments, in
particular, FetchPush, FetchPickAndPlace, and FetchSlide. Therefore, to obtain better results, we
remove goal-chaining for these environments in our experiments.

GCSL. We implement GCSL by removing the DDPG critic component and changing the policy loss
to maximum likelihood:

min Eg.q) g0 0 (ajs;Q)] (60)

WGCSL. We implement WGCSL on top of GCSL by including a Q-function. The Q-function is
trained using TD error as in DDPG and provided an advantage weighting in the regression loss.

The advantage term we computedés;; a;;g) = r(se;g) + Q (St+1; (St+1:9);9) Q(St; & Q).
Using this, the WGCSL policy objective is

Min Eg.a: () d© ' texpyp (A(st;a; (si)log (aj s (si)) (61)

where we clipexp() for numerical stability. The original WGCSL uses different HER rates for

the critic and the actor training. To make the implementation simple and consistent with all other
approaches, we use the same HER rate for both components. We note that the original WGCSL com-
putes the advantage term slightly differentlyA;; a;; ) = r(s;;g) + Q (St+1; (St+1:0); )

Q(st; (st;0); g); this version of WGCSR.is incorporated in our open-sourced code.

With the exception of AM, all baselines set the goal-relabeling distributfomo be the uniform
distribution over future states in the same trajectory (See Equation (26)).

G.2 Architectures and Hyperparameters

Each algorithm uses their own set of xed hyperparameters for all tasks. WGCSL, GCSL, and DDPG
are already tuned on our set of tasR8,[47], so we use the reported values from prior works; AM, in

our implementation, shares same networks as DDPG, so we use DDPG's values. For GoFAR, we
use identical hyperparameters as WGCSL because they share similar network components; GoFAR
additionally trains a discriminator, for which we use the same architecture and learning rate as the
value network. We impose a small discriminator gradient penafijtp prevent over tting. For all
experiments, We train each method for 3 seeds, and each training run uses 400k minibatch updates of
size 512. The architectures and hyperparameters for all methods are reported in Table 3.

G.3 Ofine GCRL Experiments

Datasets. For each environment, the of ine dataset composition is determined by whether data
collected by random actions provides suf cient coverage of the desired goal distribution. For
FetchReach and D'ClawTurn, we nd this to be the case and choose the of ine dataset to be 1 million
random transitions. For the other four tasks, random data does not capture meaningful goals, so we
create a mixture dataset with 100K transitions from a trained DDPG-HER agent and 900K random
transitions; the transitions are not labeled with their sources. This mixture setup has been considered
in prior works 1, 32] and is reminiscent of real-world datasets, where only a small portion of the
dataset is task-relevant but all transitions provide useful information about the environment.

G.4 Zero-Shot Transfer Experiments

We use GoFAR (Binary) variant for trainning the GoFAR planner. The low-level controller is trained
using an online DDPG algorithm on a narrow goal distribution, set to be closed to the object's initial
positions.

3We thank Joey Hejna for pointing out this difference in an email correspondence.
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Table 3: Of ine GCRL Hyperparameters.

Hyperparameter Value
Hyperparameters Optimizer Adam [22]

Critic learning rate 5e-4 (1e-3 for AM/DDPG)
Actor learning rate 5e-4 (1e-3 for AM/DDPG)
Discriminator learning rate 5e-4
Discriminator gradient penalty 0.01
Mini-batch size 256
Discount factor 0.98

Architecture Discriminator hidden dim 256
Discriminator hidden layers 2
Discriminator activation function ReLU
Critic (resp. Value) hidden dim 256
Critic (resp. Value) hidden layers 2
Critic (resp.Value) activation function RelLU
Actor hidden dim 256
Actor hidden layers 2
Actor activation function RelLU

GoFAR Hierarchical Controller operates by rst generating a sequence of sul{geals; gr) using

high DY recursively feeding the newest generated goal and conditioning on the nafjgdaén, at
each time step, the low-level controller executes actiopy (a; j St; g). The high-level subgoals
are not re-planned during low-level controller execution. We note that this is a simple planning
algorithm, and improvement in performance can be expected by considering more sophisticated
planning approaches.

H Additional Results

H.1 Ofine GCRL Full Results

In this section, we provide the full results table for discounted return, nal distance, and success rate
metrics, including error bars over 10 random seeds. The number inside the parenthesis indicates
the best HER rate for the baseline methods on the task. Btardjcate statistically signi cant
improvement over the second best-performing method under a 2-stitesie

Table 4: Discounted Return on of ine GCRL tasks, averaged @é@eandom seeds.

Task Supervised Learning Actor-Critic

GoFAR (Ours) WGCSL GCSL AM DDPG
FetchReach 282 o061 219 213(1.0) 20.91 278(1.0)| 30.1 032(0.5) 29.8 059(0.2)
FetchPick 19.7 257 9.84 258(1.0) 8.94 309(1.0)| 18.4 351(0.5) 16.8 3.10(0.5)
FetchPush?) 18.2 300 14.7 265(1.0) 13.4 302(1.0) | 14.0 281(0.5) 125 493(0.5)
FetchSlide 247 144 273 164(1.0) 1.75 131.0)| 1.46 138(0.5) 1.08 1.35(0.5)
HandReach?) 115 526 5.97 481(1.0) 1.37 221(1.0) 0. 00(0.5) 0.81 173(0.5)
D'ClawTurn (?) 9.34 315 0.0 00(1.0) 0.0 00(1.0)| 2.82 171(1.0) 0.0 00(0.2)
Average Rank | 15 3 4.17 | 2.83 4

Table 5: Final Distance on of ine GCRL tasks, averaged dv@random seeds.
Task Actor-Critic

Supervised Learning
GoFAR (Ours) WGCSL GCSL AM DDPG

FetchReach ﬂ 0.018 o0.003 0.007 000441.0) 0.008 o0.0041.0) 0.007 o0.001(05 0.041 0.005(0.2)
\

FetchPickAndPlac 0.036 0013 0.094 00491.0) 0.108 0.06q1.0) | 0.040 0.02d0.5) 0.043 0.0210.5)
FetchPush 0.033 o008 0.041 002q1.0) 0.042 o0.018(1.0) | 0.070 0.0340.5) 0.060 0.026(0.5)
FetchSlide ?) 0.120 o002 0.173 0041.0) 0.204 0051(1.0) | 0.198 0.059(0.5) 0.353 0.248(0.5)

HandReach?) 0.024 0009 0.035 0012(1.0) 0.038 00141.0)| 0.037 0.0040.5) 0.038 0.013(0.5)
D'ClawTurn (?) 0.92 o028 1.49 026(1.0) 1.54 015(1.0) 1.28 026(1.0) 1.54 013(0.2)

Average Rank 15 2.33 4.25] 2.67 4.5
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Table 6: Success Rate on of ine GCRL tasks, averaged bdeandom seeds.

Task Supervised Learning Actor-Critic
GOFAR (Ours) WGCSL GCSL AM DDPG
FetchReach 1.0 oo 0.99 o001(1.0) 0.98 o005(1.0) 1.0 00(0.5) 0.99 002(0.2)
FetchPickAndPlace 0.84 o012 0.54 016(1.0) 0.54 0201.0) | 0.78 0150.5) 0.81 0130.5)
FetchPush?) 0.88 o009 0.76 0141.0) 0.72 0151.0) | 0.67 0.14(0.5) 0.65 0.18(0.5)
FetchSlide 0.18 o012 0.18 0141.0) 0.17 013(1.0) | 0.11 0.09(0.5) 0.08 0.11(0.5)
HandReach 0.40 o020 0.25 023(1.0) 0.047 o0.10(1.0) 0.0 00(0.5) 0.023 o0.054(0.5)
D'ClawTurn (?) 0.26 o013 0.0 00(1.0) 0.0 00(1.0) | 0.13 014(1.0) 0.01 0.02(0.2)
Average Rank | 1 3 4] 3.33 3.67
H.2 Ablations

We also include the full task-breakdown table of GoFAR ablations presented in Figure 4 for complete-
ness. As shown in 7, GoOFAR and GoFAR (HER) perform comparatively on all tasks. GoFAR (binary)
is slightly worse across tasks, and GoFAR (KL) collapses due to the use of an ufistiibéggence.

Table 7: GoFAR Ablation Studies

Variants | FetchReach FetchPickAndPlace  FetchPush  FetchSlide HandReach  DClawTurn
GoFAR 27.8 0.55 195 413 189 387 367 078 119 3.00 9.34 3.15
GoFAR (HER) 28.3 0.65 198 2.82 205 229 3.85 080 8.02 570 1051 351
GoFAR (Binary) | 26.1 1.14 174178 174 267 3.69 1.75 6.01 1.62 513 4.05
GOFAR (KL) 0 0.0 000 000 000 0 0.0 0 0.0

H.3 Real-World Dexterous Manipulations

In our qualitative analysis, we visualize all methods on a speci c task instance of turning the valve
prong (marked by theedstrip) clockwise for90 degree; the goal location is marked by the

strip. The robot initial pose is randomized. As shown in Figure 9, GOFAR reaches the goal with three
random initial poses, whereas all baselines fail. See the gure captions for detail. Policy videos are
included in the supplementary material.
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(a) GoFAR robustly achieved the goal with three random initial poses; in the rst two runs, it demonstrates
“recovery” behavior, as the robot would initially overshoot and then turn the valve counterclockwise. In the last
run, the robot initially undershoots and then turns again to reach the goal.

(b) Baselines fail to turn the volve prong (marked by thdstrip) to the goal angle (marked by the=enstrip).
AM is the only method that is able to rotate the prong to some degree, though it overshoots in this case and
exhibits unnatural behavior.

Figure 9: D'ClawTurn policy visualization.

H.4 Zero-Shot Plan Transfer

We visualize GoFAR hierarchical controller and the plain low-level controller on three distinct goals
in Figure 10. See the gure caption for detail. Policy videos are included in the supplementary
material.
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(a) Goal 1

(b) Goal 2

(c) Goal 3

Figure 10: Qualitative comparison of GOFAR hierarchical controller (top) vs. plain low-level con-
troller (bottom) on representative goals in the Franka pushing Restcircles represent intermediate
subgoals generated by the GoFAR planner. As shown, the low-level controller only succeeds in Goal
3, whereas the hierarchical controller achieves the distant goals in all three cases.
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